



# Model Based Open Innovation for Systems Engineering

Joshua Sutherland Supervisor: Prof. Kazuhiro Aoyama

Department of System Innovation, The University of Tokyo, Japan.



RESEARCH
PERSPECTIVES
ON CREATIVE
INTERSECTIONS



















## Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)



## Title: Model Based Open Innovation

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses

for Systems Engineering

- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)





- Innovation:
  - Know this is important for economic growth (kind of the point of Engineering...)
- Open Innovation is a promising avenue to increase the amount of innovation





- Innovation:
  - Know this is important for economic growth (kind of the point of Engineering...)
- Open Innovation is a promising avenue to increase the amount of innovation







- Innovation:
  - Know this is important for economic growth (kind of the point of Engineering...)
- Open Innovation is a promising avenue to increase the amount of innovation



Basic assumptions: There is stuff outside your company that you should use. There is stuff inside your company that others want to use. If contracts are adequately .

- Innovation:
  - Know this is important for economic growth (kind of the point of Engineering...)
- Open Innovation is a promising avenue to increase the amount of innovation















#### Modularity:

- Enables us to integrate new technologies easily
- Seen as an enabler for flexible designs
- Changes business models





#### Modularity:

- Enables us to integrate new technologies easily
- Seen as an enabler for flexible designs
- Changes business models

#### Composability:

- Allows us to form new designs by making use of existing part libraries. Just compose.
- E nabled by modularity





#### Modularity:

- Enables us to integrate new technologies easily
- Seen as an enabler for flexible designs
- Changes business models

#### Composability:

- Allows us to form new designs by making use of existing part libraries. Just compose.
- E nabled by modularity







#### Model Based X

- X = {Systems Engineering, Design, Manufacturing, ...}
  - Lower cost than physical prototypes
  - Opens up computers to do stuff:
    - Simulation
    - V&V
    - Complexity management
    - ...





#### Model Based X

- X = {Systems Engineering, Design, Manufacturing, ...}
  - Lower cost than physical prototypes
  - Opens up computers to do stuff:
    - Simulation
    - V&V
    - Complexity management
    - ...





#### Model Based X

X = {Systems Engineering, Design, Manufacturing, ...}

Lower cost than physical prototypes

• Opens up computers to do stuff:

- Simulation
- V&V
- Complexity management
- ...







#### Model Based X

X = {Systems Engineering, Design, Manufacturing, ...}

Lower cost than physical prototypes

• Opens up computers to do stuff:

- Simulation
- V&V
- Complexity management
- ...



Biggest driver in the changes in how we work (including in design)

## SCHOOL OF ENGINEERING THE UNIVERSITY OF TOKYO OVERALL TOPICS of interest... DEPARTMENT OF SYSTEMS INNOVATION SYSTEMS INNOVATION







But there are a lot of topics in Systems Engineering...





## Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)

# Clarifying current understanding / Current state of the world

Development Lifecycle Stages (LS) flow

| LS1: Need                | LS2: Concept dev | LS3: System Design                    | LS4: Detail Design                      | LS5:<br>Produce                         | LS6: Test &<br>Refine | LS7: Deploy          |
|--------------------------|------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|----------------------|
| Opportunity /<br>nroblem | required         | Comparing and selecting architectures | Define 3D specifications of components. | Create the system                       | · ·                   | Operate and maintain |
|                          |                  | <br>                                  |                                         | T — — — — — — — — — — — — — — — — — — — | <br> <br>             | <br> <br>            |
|                          | <br> <br> <br>   | <br>                                  | <br> <br>                               | <br>                                    | <br>                  | <br> <br>            |
|                          | <br>             | <br>                                  | <br>                                    | <br>                                    | <br>                  | <br>                 |
|                          | l<br>I           | l<br>I                                | <br>                                    | <br>                                    | <br>                  | <br>                 |

I will assume that this line in the boundary of the firm leading this lifecycle stage





#### Simple Open Innovation Approaches:

Call some consultants: e.g. http://www.ninesigma.com/







#### Simple Open Innovation Approaches:

Crowd sourced problem solving: e.g. X Prize

| Development Life | cycle Stages (LS) flow |  |
|------------------|------------------------|--|

| LS2: Concept<br>dev | LS3: System Design          | LS4: Detail Design               | LS5:<br>Produce                                    | LS6: Test &<br>Refine                                                                                                                      | LS7: Deploy                                                                                                                                                  |
|---------------------|-----------------------------|----------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| required            | selecting                   | specifications of                | Create the system                                  | Incrementally test and refine.                                                                                                             | Operate and maintain                                                                                                                                         |
|                     |                             |                                  | <br>                                               |                                                                                                                                            |                                                                                                                                                              |
|                     |                             | Development                      | <u>.                                      </u>     | <u>.                                      </u>                                                                                             |                                                                                                                                                              |
|                     | <br>                        | <br>                             | <br> <br> <br> <br> <br> <br> <br>                 | <br>                                                                                                                                       |                                                                                                                                                              |
|                     | dev<br>Defining<br>required | Defining Comparing and selecting | Defining Comparing and Define 3D specifications of | Defining Comparing and selecting specifications of components.  Create the system  Create the system  Create the system  Create the system | dev  Comparing and selecting specifications of components.  Create the system besign Produce Refine  Create the system system system system test and refine. |

Problem to be solved

https://www.innocentive.com/

X Prize

https://herox.com/

https://tepco.cuusoo.com/#about

## Simple Open Innovation Approaches:

Big Systems Engineering Project:

e.g. Lockheed Martin F-35



DEPARTMENT OF

SYSTEMS INNOVATION





Vtoall.com

#### Simple Open Innovation Approaches for:

Design focused companies who outsource manufacturing

|                          |                                       | •                                     |                                         |                   |                                                  |                       |
|--------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------------------|--------------------------------------------------|-----------------------|
|                          |                                       | Developmer                            | nt Lifecycle Stages (                   | LS) flow          |                                                  |                       |
| LS1: Need                | LS2: Concept<br>dev                   | LS3: System Design                    | LS4: Detail Design                      | LS5:<br>Produce   | LS6: Test &<br>Refine                            | LS7: Deploy           |
| Opportunity /<br>problem | Defining<br>required<br>functionality | Comparing and selecting architectures | Define 3D specifications of components. | Create the system | Incrementally test and refine.                   | Operate and maintain  |
|                          | ļ                                     | !                                     | Development                             | !                 |                                                  |                       |
|                          |                                       | <br>                                  |                                         |                   |                                                  |                       |
|                          | <br> <br> <br> <br>                   | <br> <br> <br> <br> <br>              |                                         |                   |                                                  | <br> <br> <br> <br> - |
|                          |                                       | which                                 | tem already exists we can use?          | 1 1               | n we get it bu<br>anufacturing:<br>https://en.nc |                       |

Alibaba.com

Supplier catalogues







But this does not scale well...



But this does not scale well...





But this does not scale well...







#### Open Innovation:

Driven by modular platforms which enable composition

|                   | Development Energy are oranges (12) non |                  |                    |                                         |                   |                                |                      |
|-------------------|-----------------------------------------|------------------|--------------------|-----------------------------------------|-------------------|--------------------------------|----------------------|
| LS1               | : Need                                  | LS2: Concept dev | LS3: System Design | LS4: Detail Design                      | LS5:<br>Produce   | LS6: Test &<br>Refine          | LS7: Deploy          |
| Opport<br>probler | unity /<br>n                            | required         | selecting          | Define 3D specifications of components. | Create the system | Incrementally test and refine. | Operate and maintain |
|                   |                                         |                  |                    | Development                             |                   |                                |                      |
|                   |                                         | I                | 1                  |                                         |                   | I                              |                      |



#### Subsystem already exists which we can use?

- Apple App store
- Google ARA Modular Phone
- Lego
- LittleBits
- DARPA make program



# \*\*SCHOOL OF ENGINEERING SYSTEMS INNOVATION 'Freeform' Open Innovation vs. Modular Platforms for Composability

|                                       | "Freeform"                                                                  | Modular Platforms                             |
|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|
| Search space for modules              | Infinite                                                                    | Finite to the platform                        |
| Guarantee<br>subsystem can be<br>used | No                                                                          | The standard acts as a bridge between modules |
| Other limitations                     | Descriptions are as detailed as the providing organization wants them to be | Often volumetric efficiency is reduced        |

## SCHOOL OF ENGINEERING THE UNIVERSITY OF TOKYO "Freeform" Open Innovation vs.

## Modular Platforms for Composability

|                                       | "Freeform"                                                                  | Modular Platforms                             |
|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|
| Search space for modules              | Infinite                                                                    | Finite to the platform                        |
| Guarantee<br>subsystem can be<br>used | No                                                                          | The standard acts as a bridge between modules |
| Other limitations                     | Descriptions are as detailed as the providing organization wants them to be | Often volumetric efficiency is reduced        |

Trading: Model richness vs. Model conforming to a standard

# "Freeform" Open Innovation vs. Modular Platforms for Composability

|                                       | "Freeform"                                                                  | Modular Platforms                             |
|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|
| Search space for modules              | Infinite                                                                    | Finite to the platform                        |
| Guarantee<br>subsystem can be<br>used | No                                                                          | The standard acts as a bridge between modules |
| Other limitations                     | Descriptions are as detailed as the providing organization wants them to be | Often volumetric efficiency is reduced        |

Trading: Model richness vs. Model conforming to a standard

Could we use the Modular Platforms for Composability on other areas of the development flow?



## Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)





#### A more ideal state

- All needs and industrial capacity clearly advertised such that they can be combined with the appropriate other modules
  - Of those quickly find the right parts which can aid development
- And use simulation to compare alternatives...









#### Open Innovation:

#### Focusing on the design lifecycle stages

|                     |                     | Developmen                            | t Lifecycle Stages (                    | LS) flow          |                                |                      |
|---------------------|---------------------|---------------------------------------|-----------------------------------------|-------------------|--------------------------------|----------------------|
| LS1: Nee            | LS2: Concept<br>dev | LS3: System Design                    | LS4: Detail Design                      | LS5:<br>Produce   | LS6: Test &<br>Refine          | LS7: Deploy          |
| Opportunity problem | required            | Comparing and selecting architectures | Define 3D specifications of components. | Create the system | Incrementally test and refine. | Operate and maintain |
|                     |                     | <br>                                  | <br>                                    |                   | <br>                           | <br>                 |
|                     |                     |                                       | Development                             |                   |                                |                      |
|                     |                     |                                       |                                         |                   |                                |                      |
|                     |                     | U                                     | U                                       |                   |                                |                      |

#### If we provide models:

What model should be used when provided by the supplier?

What detail? What language?

What aspect?? Behaviour? Geometry? Mass properties?





#### Past research: Paul Eremenko (Now Airbus)

- 2013 DARPA Adaptive Vehicle Make (online system to build ground vehicles out of components):
  - Cancelled because hard to share military technology online and lack of engineering expertise in the participants
- 2016 Google / Motorola ARA:
  - Paused:
    - Difficult to verify too many combinations
    - Volumetric efficiency matters on phones



# Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)





### Main questions and hypotheses

- What domains and can Modular Platforms for Composability be made to work well (other than lego...)?
  - -> The where and when
- How much more effective is such an approach compared to "freeform"?
  - -> The why
- What does the model need to be [contain]?
  - -> The how





#### What does the model need to be [contain]? -> The how



Eremenko, Paul. "Formal Model-Based Design & Manufacture: A Template for Managing Complexity in Large-Scale Cyber-Physical Systems." In *Conference on Systems Engineering Research*, (March 21, 2013), 2013.





#### What does the model need to be [contain]? -> The how



Eremenko, Paul. "Formal Model-Based Design & Manufacture: A Template for Managing Complexity in Large-Scale Cyber-Physical Systems." In *Conference on Systems Engineering Research*, (March 21, 2013), 2013.













































Focus on Decomposition



# My previous research



Issues:



#### SYSTEMS INNOVATION

# My previous research



#### Issues:

 Just integrating different model types



#### SYSTEMS INNOVATION

# My previous research



#### Issues:

 Just integrating different model types



#### SYSTEMS INNOVATION

# My previous research



#### Issues:

- Just integrating different model types
- No clear on the reasoning of why to integrate these model types





# Output goal

- Big goal:
  - Provide a standard for models to be made such that they can be more simply integrated with others. Based on research which says it is worthwhile.



- Current thoughts (to limit scope):
  - Start with Modelica modelling language
  - Stay with ground vehicles (cars and ships)



# Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research

Biggest challenge. Any help gladly appreciated.

- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)

# School of Engineering The University of Tokyo Systems Innovation Selecting type of research



Figure 2.2 Types of design research projects and their main focus. (Iterations omitted)



# Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)

# Determining areas of relevance and contribution

Relevance

- Open Innovation is viewed as a necessity to remain competitive
- Modelling opens the door for cost reduction and design improvements by prediction

Contribution

 Little work has gone into establishing what models are needed for enabling Modular Platforms for Composability



# Title: Model Based Open Innovation for Systems Engineering

- Overall topics of interest
- Clarifying current understanding / Current state of the world
- A more ideal state
- Main questions and hypotheses
- Selecting type of research
- Determining areas of relevance and contribution
- Research plan (bad plan is better than no plan)





#### Research Plan







# **Questions?**



Model Based Open Innovation for Systems Engineering

Joshua Sutherland

Supervisor: Prof. Kazuhiro Aoyama

Department of System Innovation, The University of Tokyo, Japan.



7 – 9 JUNE 2017

RESEARCH PERSPECTIVES ON CREATIVE INTERSECTIONS















